Site icon TechNewsBoy.com

Bionic wing flaps improve wind energy efficiency

Airflow patterns around a Gurney flap. Credit: Liming Wu, Xiaomin Liu, Yang Liu, and Guang Xi

Wind energy relies on efficient wind turbine blades, which act as airfoils, structures akin to an airplane wing. Air flow control accessories similar to those found in aircraft improve the turbine blade’s aerodynamic performance.

In the Journal of Renewable and Sustainable Energy, scientists from China show a bionic approach combining features of a seagull’s wing with an engineered flow control accessory, known as a Gurney flap, can greatly improve wind turbine performance.

A Gurney flap is a small tab projecting at right angles from the trailing edge of a wing. Its presence disturbs wind flow patterns and is especially effective at improving performance at low angles of attack. In aerodynamics, the angle of attack is the angle between a line through the center of an aircraft wing and the oncoming flow of air.

Although Gurney flaps improve performance of airfoils at low attack angles, they are not ideal for large angles of attack. Research has shown although Gurney flaps can significantly improve the performance of wind turbines in some situations, the turbine speed will be reduced.

Bionic flow control is a relatively new approach that imitates biological flight control systems—in other words, wings and feathers. The idea comes from the observation that during landing or in a gust of wind, the feathers on the top of a bird’s wings will pop out, creating a natural flap.

Hawk (left) and seagull (right); feathers lift up as the bird descends, creating a bionic flap in their wings. Credit: Liming Wu, Xiaomin Liu, Yang Liu, and Guang Xi

Computational and experimental studies show bionic feather-inspired flaps can increase lift and delay the onset of stalling at high angles of attack. Despite their advantages, adding bionic flaps can also reduce lift, particularly before a stall sets in. Therefore, the investigators tried an approach combining Gurney flaps with bionic features.

To achieve the best aerodynamic performance, the scientists simulated the use of the combined flow control accessory in a variety of situations, including high and low angle of attack and pre- and post-stall scenarios. They compared their computational simulations to experimental results for an aircraft wing undergoing a dynamic stall.

Combined flow control accessory effectively improves the lift coefficient of the airfoil in the pre-stall and post-stall region. Credit: Liming Wu, Xiaomin Liu, Yang Liu, and Guang Xi

“The overall trend of the calculated lift curve is in good agreement with the experimental measurement results. Therefore, our simulation accuracy is considered acceptable, because the dynamic stall and its control are notoriously difficult to predict,” author Xiaomin Liu said.

The combined flow control accessory effectively improves the lift coefficient of the airfoil according to Liu. “For angles of attack in the range 16 to 24 degrees, the maximum lift coefficient of the airfoil is increased by 15% when a combination of Gurney flap and bionic flap is used.”


Owl wing design reduces aircraft, wind turbine noise pollution


More information:
Liming Wu et al, Using the combined flow control accessory to the aerodynamic performance enhancement of bio-inspired seagull airfoils, Journal of Renewable and Sustainable Energy (2022). DOI: 10.1063/5.0079060
Provided by
American Institute of Physics


Citation:
Bionic wing flaps improve wind energy efficiency (2022, March 22)
retrieved 22 March 2022
from https://techxplore.com/news/2022-03-bionic-wing-energy-efficiency.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

For all the latest Technology News Click Here 

 For the latest news and updates, follow us on Google News

Read original article here

Denial of responsibility! TechNewsBoy.com is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – abuse@technewsboy.com. The content will be deleted within 24 hours.
Exit mobile version