Nearly all mutations that occur are harmless glitches that don’t change how the virus works – some can harm the virus while a small fraction may make the virus more infectious.
The rise of coronavirus
Until recently, the most famous example of rapid evolution was the story of the peppered moth. In the mid-1800s, factories in Manchester, England, began covering the moth’s habitat in soot, and the moth’s normal white coloring made them visible to predators. But some moths had a mutation that made them darker. Since they were better camouflaged in their new world, they could evade predators and reproduce more than their white counterparts.
We are an evolutionary biologist and an infectious disease epidemiologist at the University of Pittsburgh who work together to track and control the evolution of pathogens. Over the past year and half, we’ve been closely following how the coronavirus
It’s natural to wonder if highly effective COVID-19
How a virus mutates
For any organism, including a virus, copying its genetic code is the essence of reproduction – but this process is often imperfect. coronavirus
Each infection produces millions of viruses within a person’s body, leading to many mutated coronavirus
Nearly all of the mutations that occur are harmless glitches that don’t change how the virus works – and others in fact harm the virus. Some small fraction of changes may make the virus more infectious, but these mutants must also be lucky. To give rise to a new variant, it must successfully jump to a new person and replicate many copies.
Transmission is the important bottleneck
Most viruses in an infected person are genetically identical to the strain that started the infection. It is much more likely that one of these copies – not a rare mutation – gets passed on to someone else. Research has shown that almost no mutated viruses are transmitted from their original host to another person.
And even if a new mutant causes an infection, the mutant viruses are usually outnumbered by non-mutant viruses in the new host and aren’t usually transmitted to the next person.
The small odds of a mutant being transmitted is called the “population bottleneck.” The fact that it is only a small number of the viruses that start the next infection is the critical, random factor that limits the probability that new variants will arise. The birth of every new variant is a chance event involving a copying error and an unlikely transmission event. Out of the millions of coronavirus
How do new variants emerge?
Unfortunately, uncontrolled spread of a virus can overcome even the tightest bottlenecks. While most mutations have no effect on the virus, some can and have increased how contagious the coronavirus
Many researchers are studying which mutations lead to more transmissible versions of the coronavirus
Under these circumstances, the best way to constrain the evolution of the coronavirus
Vaccines stop new variants
The delta variant has spread around the globe, and the next variants are already on the rise. If the goal is to limit infections, vaccines are the answer.
Even though vaccinated people can still get infected with the delta variant, they tend to experience shorter, milder infections than unvaccinated individuals. This greatly reduces the chances of any mutated virus – either one that makes the virus more transmissible or one that could allow it to get past immunity from vaccines – from jumping from one person to another.
Eventually, when nearly everyone has some immunity to the coronavirus
For now, it is unlikely that vaccine-induced immunity will be the major player in variant emergence because there are lots of new infections occurring. It’s simply a numbers game. The modest benefit the virus would get from vaccine evasion is dwarfed by the vast opportunities to infect unvaccinated people.
The world has already witnessed the relationship between the number of infections and the rise of mutants. The coronavirus
The best way to stop new variants is to stop their spread, and the answer to that is vaccination.
Vaughn Cooper, Professor of Microbiology and Molecular Genetics, University of Pittsburgh and Lee Harrison, Professor of Epidemiology, Medicine, and Infectious Diseases and Microbiology, University of Pittsburgh
This article is republished from The Conversation under a Creative Commons license. Read the original article.
For all the latest Technology News Click Here
For the latest news and updates, follow us on Google News.