Method for creating 3D integrated circuit connections at low temperatures that does not require external pressures

Fig.1 (Right) SEM image of fabricated 20-μm Cu-Ag bumps, (Middle) Schematic drawing of the prepared bump cross-section, (Left) Schematic drawing of the bonded 20-μm Cu-Ag bump device. Credit: Katsuaki Suganuma

Scientists from the Flexible 3D-System Integration Laboratory at Osaka University developed a new method for the direct three-dimensional bonding of copper electrodes using silver, which can reduce the cost and energy requirements of new electronic devices. This work may help in the design of next-generation smart devices that are more compact and use less electricity.

Three-dimensional integrated circuits are playing an increasingly important role in electronic devices. Compared with conventional 2D circuits, these architectures can save both space and reduce the material required for interconnecting wires. However, the ability to form reliable 3D connections requires new methods compared with the mature technologies in use for convention integrated circuits.

Now, a team of researchers at Osaka University showed how to directly connect copper electrode “bumps” using silver layers. “Our process can be performed under gentle conditions, at relatively low temperatures and without added pressure, but the bonds were able to withstand over one thousand cycles of thermal shocking from -55 to 125 ºC,” first author Zheng Zhang says.

In this new method, silver was first sputtered onto the two copper surfaces to be bonded at room temperature. Then, heat was applied to anneal the silver layers, which caused the surface to undergo microscopic changes in a process called “stress migration.” The release of the stress during annealing led to surface roughening, which ensured a sufficient effective area between the two silver layers.

As a result, bonding could be accomplished without applied pressure even at a comparative low annealing temperature. Permanent connections as small as 20 micrometers could be realized in just ten minutes this way. This process also requires only moderate temperatures (180 °C) and can work under atmospheric conditions.

A golden ticket to smaller electronics
Fig.2 (Right) Cross-sectional image of bonded Cu-Ag bump, (Left) Magnified view of the interface of the bonded Cu-Ag sample. Credit: Katsuaki Suganuma

The team was able to confirm the surface roughness of the sputtered and annealed chips using images from by scanning electron microscopy and atomic force microscopy. “This technology is expected to contribute to chips with a high density of interconnects and advanced 3D packaging,” senior author Katsuaki Suganuma says.

The study, “Ag-Ag direct bonding via a pressureless, low-temperature, and atmospheric stress migration bonding method for 3D integration packaging,” was presented at the IEEE 72nd Electronic Components and Technology Conference (ECTC).


A technology for pressureless sinter joining for next-generation power semiconductors


Provided by
Osaka University


Citation:
Method for creating 3D integrated circuit connections at low temperatures that does not require external pressures (2022, June 22)
retrieved 22 June 2022
from https://techxplore.com/news/2022-06-method-3d-circuit-temperatures-require.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

For all the latest Technology News Click Here 

 For the latest news and updates, follow us on Google News

Read original article here

Denial of responsibility! TechNewsBoy.com is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – [email protected]. The content will be deleted within 24 hours.