Researchers develop self-standing single-ion polymer electrolytes for high-temperature magnesium batteries

Robust self-standing single-ion polymer electrolytes enabling high-safety magnesium batteries at elevated temperature. Credit: GE Xuesong

With the growing demand for space and underground resource exploitation, it is urgent to exploit special power supplies operating under elevated temperature exceeding 100 degrees Celsius.

Rechargeable magnesium batteries (RMBs) have great potential in satisfying this specialized application market due to the high melting point (651 degrees Celsius) of Mg metal, as well as superior thermostability and lower propensity for dendrite formation of Mg metal anodes. However, conventional Mg electrolytes can only operate at room temperature or bellow, which hinders the development of high-temperature RMBs.

Now, a research team led by researchers from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS), has developed a robust self-standing single-ion polymer electrolyte (SSPE) for high-safety RMBs at elevated temperature even up to 150 degrees Celsius.

The study was published on June 29 in Advanced Energy Materials.

This electrolyte exhibits an expanded electrochemical stability window of 4.8 V (vs. Mg2+/Mg), a remarkable Mg2+-ion transference number of 0.79 and a highly reversible Mg plating/stripping performance, outperforming previous reported state-of-the-art RMBs.

It enables Mo6S8//Mg batteries with superior wide-temperature (from room temperature to 150 degrees Celsius) performance and improves safety merit under abuse conditions due to its high thermal stability and nonflammability features. “Our design concept for self-standing polymer electrolyte provides a promising path to enable high-safety RMBs operating at elevated temperature, which is a significant milestone for boosting the application of RMBs,” said by Prof. Cui Guanglei from QIBEBT, corresponding author of the study. 


Unheeded failure mechanism of magnesium metal anode


More information:
Xuesong Ge et al, Robust Self‐Standing Single‐Ion Polymer Electrolytes Enabling High‐Safety Magnesium Batteries at Elevated Temperature, Advanced Energy Materials (2022). DOI: 10.1002/aenm.202201464

Provided by
Chinese Academy of Sciences


Citation:
Researchers develop self-standing single-ion polymer electrolytes for high-temperature magnesium batteries (2022, July 5)
retrieved 5 July 2022
from https://techxplore.com/news/2022-07-self-standing-single-ion-polymer-electrolytes-high-temperature.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

For all the latest Technology News Click Here 

 For the latest news and updates, follow us on Google News

Read original article here

Denial of responsibility! TechNewsBoy.com is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – [email protected]. The content will be deleted within 24 hours.